
D02 – Ordinary Differential Equations

D02BGF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02BGF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a Runge–Kutta–Merson method, until a specified component attains a given
value.

2 Specification

SUBROUTINE D02BGF(X, XEND, N, Y, TOL, HMAX, M, VAL, FCN, W, IFAIL)
INTEGER N, M, IFAIL
real X, XEND, Y(N), TOL, HMAX, VAL, W(N,10)
EXTERNAL FCN

3 Description

The routine advances the solution of a system of ordinary differential equations

y′
i = fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n,

from x = X towards x = XEND using a Merson form of the Runge–Kutta method. The system is defined
by a subroutine FCN supplied by the user, which evaluates fi in terms of x and y1, y2, . . . , yn (see Section
5), and the values of y1, y2, . . . , yn must be given at x = X.

As the integration proceeds, a check is made on the specified component ym of the solution to determine
an interval where it attains a given value α. The position where this value is attained is then determined
accurately by interpolation on the solution and its derivative. It is assumed that the solution of ym = α
can be determined by searching for a change in sign in the function ym − α.

The accuracy of the integration and, indirectly, of the determination of the position where ym = α is
controlled by the parameter TOL.

For a description of Runge–Kutta methods and their practical implementation see Hall and Watt [1].

4 References

[1] Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X — real Input/Output

On entry: X must be set to the initial value of the independent variable x.

On exit: the point where the component ym attains the value α unless an error has occurred, when
it contains the value of x at the error. In particular, if ym �= α anywhere on the range x = X to
x = XEND, it will contain XEND on exit.

2: XEND — real Input

On entry: the final value of the independent variable x.

If XEND < X on entry integration will proceed in the negative direction.

[NP3390/19/pdf] D02BGF.1

D02BGF D02 – Ordinary Differential Equations

3: N — INTEGER Input

On entry: the number of differential equations, n.

Constraint: N > 0.

4: Y(N) — real array Input/Output

On entry: the initial values of the solution y1, y2, . . . , yn.

On exit: the computed values of the solution at a point near the solution X, unless an error has
occurred when they contain the computed values at the final value of X.

5: TOL — real Input/Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration and
in the determination of the position where ym = α.

D02BGF has been designed so that, for most problems, a reduction in TOL leads to an approximately
proportional reduction in the error in the solution obtained in the integration. The relation between
changes in TOL and the error in the determination of the position where ym = α is less clear, but
for TOL small enough the error should be approximately proportional to TOL. However, the actual
relation between TOL and the accuracy cannot be guaranteed. The user is strongly recommended
to call D02BGF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge the user might compare results obtained by
calling D02BGF with TOL = 10.0−p and TOL = 10.0−p−1 if p correct decimal digits in the solution
are required.

Constraint: TOL > 0.0.

On exit: normally unchanged. However if the range from X to the position where ym = α (or to
the final value of X if an error occurs) is so short that a small change in TOL is unlikely to make
any change in the computed solution then, on return, TOL has its sign changed. To check results
returned with TOL < 0.0, D02BGF should be called again with a positive value of TOL whose
magnitude is considerably smaller than that of the previous call.

6: HMAX — real Input

On entry: controls how the sign of ym − α is checked.

If HMAX = 0.0, ym − α is checked at every internal integration step.

If HMAX �= 0.0, the computed solution is checked for a change in sign of ym − α at steps of not
greater than ABS(HMAX). This facility should be used if there is any chance of ‘missing’ the change
in sign by checking too infrequently. For example, if two changes of sign of ym − α are expected
within a distance h, say, of each other then a suitable value for HMAX might be HMAX = h/2. If
only one change of sign in ym − α is expected on the range X to XEND then HMAX = 0.0 is most
appropriate.

7: M — INTEGER Input

On entry: the index m of the component of the solution whose value is to be checked.

Constraint: 1 ≤ M ≤ N.

8: VAL — real Input

On entry: the value of α in the equation ym = α to be solved for X.

9: FCN — SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y′
i) for given values of its arguments

x, y1, . . . , yn.

D02BGF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02BGF

Its specification is:

SUBROUTINE FCN(X, Y, F)
real X, Y(n), F(n)

where n is the actual value of N in the call of D02BGF.

1: X — real Input
On entry: the value of the argument x.

2: Y(n) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

3: F(n) — real array Output
On exit: the value of fi, for i = 1, 2, . . . , n.

FCN must be declared as EXTERNAL in the (sub)program from which D02BGF is called.
Parameters denoted as Input must not be changed by this procedure.

10: W(N,10) — real array Workspace
11: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

On entry, TOL ≤ 0.0,

or N ≤ 0,

or M ≤ 0,

or M > N.

IFAIL = 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x = X, or dependence of the error on TOL would be lost if further progress
across the integration range were attempted (see Section 8 for a discussion of this error exit). The
components Y(1),Y(2), . . . ,Y(n) contain the computed values of the solution at the current point
x = X. No point at which ym − α changes sign has been located up to the point x = X.

IFAIL = 3

TOL is too small for the routine to take an initial step (see Section 8). X and Y(1),Y(2), . . . ,Y(n)
retain their initial values.

IFAIL = 4

At no point in the range X to XEND did the function ym − α change sign. It is assumed that
ym − α has no solution.

IFAIL = 5

A serious error has occurred in an internal call to C05AZF. Check all subroutine calls and array
dimensions. Seek expert help.

[NP3390/19/pdf] D02BGF.3

D02BGF D02 – Ordinary Differential Equations

IFAIL = 6

A serious error has occurred in an internal call to an integration routine. Check all subroutine
calls and array dimensions. Seek expert help.

IFAIL = 7

A serious error has occurred in an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

7 Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the
position where ym = α and on the method. It can be controlled by varying TOL but the approximate
proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too
large, the underlying theory may break down and the result of varying TOL may be unpredictable. For
TOL too small, rounding error may affect the solution significantly and an error exit with IFAIL = 2 or
IFAIL = 3 is possible.

8 Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the system of
differential equations defined by FCN, on the range, the position of solution and the tolerance. There is
also an overhead of the form a+ b × n where a and b are machine-dependent computing times.

For some problems it is possible that D02BGF will exit with IFAIL = 4 due to inaccuracy of the computed
value ym. For example, consider a case where the component ym has a maximum in the integration range
and α is close to the maximum value. If TOL is too large, it is possible that the maximum might be
estimated as less than α, or even that the integration step length chosen might be so long that the
maximum of ym and the (two) positions where ym = α are all in the same step and so the position where
ym = α remains undetected. Both these difficulties can be overcome by reducing TOL sufficiently and, if
necessary, by choosing HMAX sufficiently small. For similar reasons, care should be taken when choosing
XEND. If possible, the user should choose XEND well beyond the point where ym is expected to equal
α, for example |XEND − X| should be made about 50% longer than the expected range. As a simple
check, if, with XEND fixed, a change in TOL does not lead to a significant change in ym at XEND, then
inaccuracy is not a likely source of error.

If the routine fails with IFAIL = 3, then it could be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If the routine fails with IFAIL = 2, it is likely that it has been called with a value of TOL which is so small
that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved systems
and very small values of TOL. The user should, however, consider whether there is a more fundamental
difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL = 2, unless overflow occurs first. If overflow occurs using D02BGF, routine D02PDF
can be used instead to detect the increasing solution before overflow occurs. In any case,
numerical integration cannot be continued through a singularity, and analytical treatment should
be considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components the routine will use
very small steps in x (internally to D02BGF) to preserve stability. This will usually exhibit itself by
making the computing time excessively long, or occasionally by an exit with IFAIL = 2. Merson’s
method is not efficient in such cases, and the user should try the method D02EJF which uses a
Backward Differentiation Formula. To determine whether a problem is stiff, D02PCF may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method should
work well for low accuracy calculations (three or four figures). For high accuracy calculations or where
FCN is costly to evaluate, Merson’s method may not be appropriate and a computationally less expensive
method may be D02CJF which uses an Adams method.

D02BGF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02BGF

For problems for which D02BGF is not sufficiently general, the user should consider the routines D02PDF
and D02BHF. Routine D02BHF can be used to solve an equation involving the components y1, y2, . . . , yn

and their derivatives (for example, to find where a component passes through zero or to find the maximum
value of a component). It also permits a more general form of error control and may be preferred to
D02BGF if the component whose value is to be determined is very small in modulus on the integration
range. D02BHF can always be used in place of D02BGF, but will usually be computationally more
expensive for solving the same problem. D02PDF is a more general routine with many facilities including
a more general error control criterion. D02PDF can be combined with the root-finder C05AZF and the
interpolation routine D02PXF to solve equations involving y1, y2, . . . , yn and their derivatives.

This routine is only intended to be used to locate the first zero of the function ym − α. If later zeros are
required users are strongly advised to construct their own more general root finding routines as discussed
above.

9 Example

To find the value X > 0.0 where y = 0.0, where y, v, φ, are defined by

y′ = tanφ

v′ =
−0.032 tanφ

v
− 0.02v
cosφ

φ′ =
−0.032

v2

and where at X = 0.0 we are given y = 0.5, v = 0.5 and φ = π/5. We write y = Y(1), v = Y(2) and
φ = Y(3) and we set TOL = 1.0E−4 and TOL = 1.0E−5 in turn so that we can compare the solutions
obtained. We expect the solution X � 7.3 and we set XEND = 10.0 so that the point where y = 0.0 is
not too near the end of the range of integration. The value of π is obtained by using X01AAF.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D02BGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N, M
PARAMETER (N=3,M=1)

* .. Local Scalars ..
real HMAX, PI, TOL, VAL, X, XEND
INTEGER I, IFAIL

* .. Local Arrays ..
real W(N,10), Y(N)

* .. External Functions ..
real X01AAF
EXTERNAL X01AAF

* .. External Subroutines ..
EXTERNAL D02BGF, FCN

* .. Executable Statements ..
WRITE (NOUT,*) ’D02BGF Example Program Results’
XEND = 10.0e0
HMAX = 0.0e0
VAL = 0.0e0
PI = X01AAF(X)

[NP3390/19/pdf] D02BGF.5

D02BGF D02 – Ordinary Differential Equations

DO 20 I = 4, 5
TOL = 10.0e0**(-I)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = PI/5.0e0
IFAIL = 0

*
CALL D02BGF(X,XEND,N,Y,TOL,HMAX,M,VAL,FCN,W,IFAIL)

*
WRITE (NOUT,99998) ’ Y(M) changes sign at X = ’, X
IF (TOL.LT.0.0e0) WRITE (NOUT,*)

+ ’ Over one-third steps controlled by HMAX’
20 CONTINUE

STOP
*
99999 FORMAT (1X,A,e8.1)
99998 FORMAT (1X,A,F7.4)

END
*

SUBROUTINE FCN(T,Y,F)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real F(N), Y(N)

* .. Intrinsic Functions ..
INTRINSIC COS, TAN

* .. Executable Statements ..
F(1) = TAN(Y(3))
F(2) = -0.032e0*TAN(Y(3))/Y(2) - 0.02e0*Y(2)/COS(Y(3))
F(3) = -0.032e0/Y(2)**2
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02BGF Example Program Results

Calculation with TOL = 0.1E-03
Y(M) changes sign at X = 7.2884

Calculation with TOL = 0.1E-04
Y(M) changes sign at X = 7.2883

D02BGF.6 (last) [NP3390/19/pdf]

